Discretization of a dynamic thermoviscoelastic Timoshenko beam
نویسندگان
چکیده
We consider a nonlinear model for a thermoelastic beam that can enter in contact with obstacles. We first prove the well-posedness of this problem. Next, we propose a discretization by Euler and Crank-Nicolson schemes in time and finite elements in space and perform the a priori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach. Résumé: Nous considérons un modèle non linéaire pour une poutre thermoélastique qui peut entrer en contact avec des obstacles. Nous prouvons que ce problème est bien posé. Puis nous écrivons une discrétisation par schémas d’Euler et de Crank-Nicolson en temps et éléments finis en espace et effectuons l’analyse a priori du problème discret. Quelques expériences numériques confirment l’intérêt de cette approche. 1 Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. 2 LANA, Departamento de Matemática, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS Brasil. e-mail addresses: [email protected], [email protected] ha l-0 08 74 57 9, v er si on 1 18 O ct 2 01 3
منابع مشابه
Size-Dependent Forced Vibration Analysis of Three Nonlocal Strain Gradient Beam Models with Surface Effects Subjected to Moving Harmonic Loads
The forced vibration behaviors are examined for nonlocal strain gradient nanobeams with surface effects subjected to a moving harmonic load travelling with a constant velocity in terms of three beam models namely, the Euler-Bernoulli, Timoshenko and modified Timoshenko beam models. The modification for nonlocal strain gradient Timoshenko nanobeams is exerted to the constitutive equations by exc...
متن کاملDynamic Response of an Axially Moving Viscoelastic Timoshenko Beam
In this paper, the dynamic response of an axially moving viscoelastic beam with simple supports is calculated analytically based on Timoshenko theory. The beam material property is separated to shear and bulk effects. It is assumed that the beam is incompressible in bulk and viscoelastic in shear, which obeys the standard linear model with the material time derivative. The axial speed is charac...
متن کاملReduced-order LQG control of a Timoshenko beam model
We present a computational approach for the construction of reducedorder controllers for the Timoshenko beam model. By means of a space discretization of the Timoshenko equations, we obtain a large-scale, finite-dimensional dynamical system, for which we compute an LQG controller for closed-loop stabilization. The solutions of the algebraic Riccati equations characterizing the LQG controller ar...
متن کاملDynamic Stability of Nano FGM Beam Using Timoshenko Theory
Based on the nonlocal Timoshenko beam theory, the dynamic stability of functionally gradded (FG) nanoeams under axial load is studied in thermal environment, with considering surface effect. It is used power law distribution for FGM and the surface stress effects are considered based on Gurtin-Murdoch continuum theory. Using Von Karman geometric nonlinearity, governing equations are derived bas...
متن کاملChaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses
A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...
متن کامل